<imgsrc='./img/EU-Copernicus-EUM_3Logos.png'alt='Logo EU Copernicus EUMETSAT'align='right'width='50%'></img>
%% Cell type:markdown id: tags:
<br>
%% Cell type:markdown id: tags:
# LTPy - Learning Tool for Python on Atmospheric Composition Data
%% Cell type:markdown id: tags:
<br>
%% Cell type:markdown id: tags:
**LTPy - Learning tool for Python on Atmospheric Composition Data** is a Python-based training course on Atmospheric Composition Data. The training course covers [10 - DATA ACCESS](#data_access), [20 - DATA DISCOVERY](#data_discovery), [30 - CASE STUDIES](#case_studies) and [40 - EXERCISES](#exercises) of satellite- and model-based data on Atmospheric Composition.
The course is based on [Jupyter notebooks](https://jupyter.org/), which allow for a high-level of interactive learning, as code, text description and visualisation is combined in one place. If you have not worked with `Jupyter Notebooks` before, you can look at the module [01 - Python and Project Jupyter 101](./01_Python_and_Jupyter_101.ipynb) to get a short introduction to Jupyter notebooks and their benefits.
%% Cell type:markdown id: tags:
<hr>
%% Cell type:markdown id: tags:
## Data on Atmospheric Composition
%% Cell type:markdown id: tags:
This course features the following **satellite** data:
*`Metop-A/B/C GOME-2 Level 2` data
*`Metop-A/B/C GOME-2 Level 3` reprocessed and regridded data
*`Polar Multi-Sensor Aerosol Optical Properties (PMAp) Level 2` data
*`Metop-A/B/C IASI Level 2` data
*`Copernicus Sentinel-5P TROPOMI Level 2` data
*`Copernicus Sentinel-3 OLCI Level 1B` data
*`Copernicus Sentinel-3 SLSTR NRT FRP Level 2` data
*`Copernicus Sentinel-3 SLSTR NRT AOD Level 2` data
And the following **model-based** data:
*`Copernicus Atmosphere Monitoring Service (CAMS) Global Reanalysis (EAC4)` data
*`Copernicus Atmosphere Monitoring Service (CAMS) Global Fire Assimilation System (GFAS)` data
*`Coperncus Emergency Management Service (CEMS) Global ECMWF Fire Forecast (GEFF)` data
%% Cell type:markdown id: tags:
<hr>
%% Cell type:markdown id: tags:
## Course material
%% Cell type:markdown id: tags:
The course follows a modular approach and offers modules on:
-[10 - DATA ACCESS](#data_access)
-[20 - DATA DISCOVERY](#data_discovery)
-[30 - CASE STUDIES](#case_studies)
-[40 - EXERCISES](#exercises)
<br>
<divclass="alert alert-block alert-info">
<b><aid='data_access'></a>10 - DATA ACCESS</b>
</div>
*[11 - Atmospheric Composition data overview and acccess](./10_data_access/11_ac_data_access_overview.ipynb)
*[12 - WEkEO Harmonized Data Access API](./10_data_access/12_WEkEO_harmonized_data_access_api.ipynb)
<br>
<divclass="alert alert-block alert-success">
<b><aid='data_discovery'></a>20 - DATA DISCOVERY</b>
</div>
#### *Metop-A/B/C GOME-2 Level 2 and Level 3 data*
#### *Copernicus Atmosphere Monitoring Service (CAMS) data*
*[261 - CAMS Global reanalysis (EAC4) - Organic Matter Aerosol Optical Depth - Load and browse](./20_data_discovery/261_CAMS_EAC4_OMAOD_load_browse.ipynb)
*[262 - CAMS Global Fire Assimilation System (GFAS) - Fire Radiative Power - Load and browse](./20_data_discovery/262_CAMS_GFAS_FRPFIRE_load_browse.ipynb)
*[263 - CAMS Global Forecast - Dust Aerosol Optical Depth - Load and browse](./20_data_discovery/263_CAMS_global_forecast_duaod_load_browse.ipynb)
*[264 - CAMS European air quality forecast - Dust Concentration - Load and browse](./20_data_discovery/264_CAMS_European_air_quality_forecast_dust_concentration_load_browse.ipynb)
*[265 - European air quality forecast - Nitrogen Dioxide - Load and browse](./20_data_discovery/265_CAMS_European_air_quality_forecast_NO2_load_browse.ipynb)
#### *Copernicus Emergency Management Service (CEMS) data*
*[271 - CEMS Global ECMWF Fire Forecast - Fire Weather Index - Load and browse](./20_data_discovery/271_CEMS_GEFF_FWI_load_browse.ipynb)
*[272 - CEMS Global ECMWF Fire Forecast - Fire Weather Index - Harmonized Danger Classes](./20_data_discovery/272_CEMS_GEFF_FWI_harmonized_danger_classes.ipynb)
*[273 - CEMS Global ECMWF Fire Forecast - Fire Weather Index - Custom Danger Classes](./20_data_discovery/273_CEMS_GEFF_FWI_custom_danger_classes.ipynb)
**NOTE:** Throughout the course, general functions to `load`, `re-shape`, `process` and `visualize` the datasets are defined. These functions are re-used when applicable. The [functions notebook](./functions.ipynb) gives you an overview of all the functions defined and used for the course.
If a notebook makes use of these functions, they are loaded as **helper functions** at the beginning of the notebook. With `?function_name`, you can load the function's docstring to see what it does and which keyword arguments the function requires.
See the example to load the docstring of the function [visualize_pcolormesh](./functions.ipynb#visualize_pcolormesh):
%% Cell type:code id: tags:
``` python
%run./functions.ipynb
```
%% Cell type:code id: tags:
``` python
?visualize_pcolormesh
```
%% Cell type:markdown id: tags:
<hr>
%% Cell type:markdown id: tags:
## Learning outcomes
%% Cell type:markdown id: tags:
The course is designed for `medium-level users`, who have basic Python knowledge and understanding of Atmospheric composition data.
After the course, you should have:
* an idea about the **different datasets on Atmospheric Composition data**,
* knowledge about the most useful **Python packages** to handle, process and visualise large volumes of Earth Observation data
* an idea about different **data application areas**
%% Cell type:markdown id: tags:
<hr>
%% Cell type:markdown id: tags:
## Access to the `LTPy JupyterHub`
%% Cell type:markdown id: tags:
The course material is made available on a JupyterHub instance, a pre-defined environment that give learners direct access to the data and Python packages required for following the course.
The `JupyterHub` can be accessed as follows:
%% Cell type:markdown id: tags:
* Web address: [https://ltpy.adamplatform.eu](https://ltpy.adamplatform.eu)
* Create an account: [https://login.ltpy.adamplatform.eu/](https://login.ltpy.adamplatform.eu/)
* Log into the `JupyterHub` with your account created.
%% Cell type:markdown id: tags:
<hr>
%% Cell type:markdown id: tags:
## Reproduce LTPy on Atmospheric Compostion data locally
%% Cell type:markdown id: tags:
In case you wish to reproduce the course modules on your local setup, the following Python version and Python packages will be required:
* Python version: **Python3.8**
* Python packages: see [requirements.txt](./requirements.txt)
Python packages can be installed as follows: `pip install -r requirements.txt`.
%% Cell type:markdown id: tags:
The `eodata` folder with all the data required for the training course can be accessed and downloaded from [https://sftp.eumetsat.int](https://sftp.eumetsat.int/login). Find the user name and password in order to be able to login [here](https://gitlab.eumetsat.int/eumetlab/atmosphere/atmosphere/-/blob/master/sftp_login.txt).
%% Cell type:markdown id: tags:
<hr>
%% Cell type:markdown id: tags:
<p><imgsrc='./img/copernicus_logo.png'align='left'alt='Logo EU Copernicus'width='25%'></img></p>
<brclear=left>
<pstyle="text-align:left;">This project is licensed under the <ahref="./LICENSE">MIT License</a><spanstyle="float:right;"><ahref="https://gitlab.eumetsat.int/eumetlab/atmosphere/atmosphere">View on GitLab</a> | <ahref="https://training.eumetsat.int/">EUMETSAT Training</a>
@@ -57,6 +60,9 @@ The course follows a modular approach and offers modules on:
##### *Copernicus Atmosphere Monitoring Service (CAMS) data*
*[261 - CAMS Global reanalysis (EAC4) - Organic Matter Aerosol Optical Depth - Load and browse](./20_data_discovery/261_CAMS_EAC4_OMAOD_load_browse.ipynb)
*[262 - CAMS Global Fire Assimilation System (GFAS) - Fire Radiative Power - Load and browse](./20_data_discovery/262_CAMS_GFAS_FRPFIRE_load_browse.ipynb)
*[263 - CAMS Global Forecast - Dust Aerosol Optical Depth - Load and browse](./20_data_discovery/263_CAMS_global_forecast_duaod_load_browse.ipynb)
*[264 - CAMS European air quality forecast - Dust Concentration - Load and browse](./20_data_discovery/264_CAMS_European_air_quality_forecast_dust_concentration_load_browse.ipynb)
*[265 - European air quality forecast - Nitrogen Dioxide - Load and browse](./20_data_discovery/265_CAMS_European_air_quality_forecast_NO2_load_browse.ipynb)
##### *Copernicus Emergency Management Service (CEMS) data*
*[271 - CEMS Global ECMWF Fire Forecast - Fire Weather Index - Load and browse](./20_data_discovery/271_CEMS_GEFF_FWI_load_browse.ipynb)
...
...
@@ -73,6 +79,9 @@ The course follows a modular approach and offers modules on: